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ABSTRACT 

The spherical earth diffraction subroutine SPH35 in the 
radar propagation code SEKE has been known to cause errors in 
propagation loss computations for a range of combinations of 
antenna and target heights.  In this report an efficient method 
to evaluate the Airy function in the complex plane is 
presented.  This method uses the power series expansion near 
the origin and an integral representation elsewhere.  It is 
more accurate and as fast as the method employed in the spheri- 
cal earth diffraction subroutine SPH35 that evaluates every 
Airy function of Fock's series by a fourth-order polynomial fit 
to its logarithm.  The algorithm presented was incorporated in 
a new spherical earth diffraction subroutine (SPH35N).  It was 
found that, if SEKE uses this subroutine, no problems arise for 
normalized heights of up to 5000 (i.e. about 350 km at VHF or 
17 km at Ku band). 

The subroutine SPH35N, described in this report, has been 
used in the versions of SEKE running at Lincoln Laboratory, and 
is in the version of SEKE currently being supplied to other 
users. 

in 
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1. INTRODUCTION 
SEKE is a computer model that predicts the one-way 

propagation factor over irregular terrain by selecting, based 
on terrain geometry, one algorithm or a weighted combination of 
algorithms designed to compute specular reflection, spherical 
earth diffraction and multiple knife-edge diffraction losses. 
A detailed description of the SEKE model and computer listing 
of the program, can be found in Reference [1]. 

SEKE was designed for low antenna and target heights.  It 
has been tested against measurements at frequencies ranging 
from X-band to VHF with target and antenna heights between 
about 10 to 1000 m [1].  When used for target and antenna 
heights outside this range inaccuracies and failures to produce 
results have been observed, mainly near and beyond geometrical 
horizon.  These inaccuracies were caused by the spherical earth 
diffraction subroutine (SPH35) which uses a series due to Fock 
[2].  In this subroutine the values of the Airy function in 
Fock's series are evaluated by a fourth-order polynominal fit 
to their logarithms.  These polynominals are tabulated for 
normalized effective antenna and target heights of up to 100 
(i.e. 7000 m at VHF), hence limiting the applicability of SPH35 
to low effective altitudes.  In addition, inaccuracies in the 
polynomial fits result in erroneous values for the propagation 
factor at some combinations of antenna and target heights near 
the optical horizon, when many terms are needed in Fock's 
series. 

In this report, we present a more accurate method for 
evaluating the Airy function in the complex plane, resulting in 
the extension of the range of validity of SEKE.  The Airy func- 
tion is evaluated using the power series expansion near the 
origin, and an integral representation elsewhere.  The computed 
values of the Airy function agree to at least four digits with 
tabulated values. 



The algorithm that evaluates the Airy function was incor- 
porated in a new spherical earth diffraction subroutine 
(SPH35N).  It was found that, if SEKE uses this subroutine, no 
problems arise for normalized heights of up to 5000, that is, 
about 375 km at VHF or 17 km at Ku band. 

Some background information is given in Section 2 about 
Fock's series, and about the Airy integral and its properties. 
Notation is also introduced in this section.  The algorithm for 
evaluating the Airy function is described in Section 3 by ex- 
plaining the power series expansion, the Gaussian quadratures 
integration, and the connection formula.  Certain computational 
difficulties resulting from the incorporation of this Airy 
function subroutine in the spherical earth diffraction algo- 
rithm are described, and the method used to overcome them is 
presented in Section 4.   Finally, a comparison between predic- 
tions made by SEKE, using either SPH35 or SPH35N are provided 
in Section 5.  A flowchart for SPH35N and its code are appended 
at the end of this report. 

2.  BACKGROUND 
2.1  SEKE 
Low-altitude propagation loss is influenced by atmospheric 

refraction and by diffraction and multipath (reflection) from 
the terrain over which the waves travel.  As a result SEKE has 
to make two main decisions.  It has to first decide whether to 
use a line-of-sight model (multipath), or a diffraction model. 
If the program decides to employ a diffraction model, a second 
decision must be made: to use multiple knife-edge diffraction 
or spherical earth diffraction. 

The first decision is based on the clearance of the direct 
ray between the radar and the target.  The program first lo- 
cates on the terrain profile the highest mask of the minimum 
clearance point, M.  Let A be the clearance of the direct ray 
at the point M and d2 and d2 be the distances from the radar to 
M and from M to the target respectively.  The Fresnel clearance 
at the point M is given by the formula: 

Ao = ^d-Td-2 



where X  is the wavelength.  If A/A0 > 1 SEKE uses multipath 
alone.  If A/A0 < 1/2 SEKE uses the diffraction subroutines. 
For the intermediate zone where 1> A/A0 > 1/2, a weighted 
average of the multipath loss F^ and the diffraction loss F^ is 
used (see Reference [1] for more detail).  When A/A0 < 1 a 
second decision is made between multiple knife-edge and spheri- 
cal earth diffraction.  The key parameter in this solution is 
the ratio h^/A0, where h^ is the height of the highest mask or 
minimum clearance point M, measured from the best-fit line on 
the terrain profile.  When the height of the discrete obstacles 
over smooth earth are large relative to A0, knife-edge dif- 
fraction should dominate over spherical earth diffraction.  In 
SEKE the propagation loss is approximated by knife-edge dif- 
fraction alone when hM/A0 > 1/2, by spherical earth diffrac- 
tion when h^/A0< 1/4 and a weighted average of the two is used 
in the intermediate region. 

2.2  Inaccuracies in SEKE 
Figure 1 shows some of the inaccuracies in SEKE caused by 

the SPH35 routine.  The plot shows the two-way propagation fac- 
tor over a smooth conducting spherical earth with an antenna 
height of 10 m and a target height of 8000 m at 167 MHz.  At 
ranges below 185 km, SEKE uses the geometric optics routine 
GEOSE.  After that point, SEKE attempts to use SPH35, but that 
routine fails.  SEKE falls back in GEOSE, which remains fairly 
accurate until about 350 km.  Then SEKE starts producing incor- 
rect results.  At the optical horizon, which is at 385 km, SEKE 
is still attempting to use SPH35, which still fails, but 
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Fig. 1.  Prediction of the two way propagation loss as a function 
of range for antenna height = 10 m and target height = 8000 m at 
VHF (167) MHz).  The solid line shows the prediction according to 
SPH35 and the dashed line according to SPH35N. 



SEKE now uses the knife-edge routine LAPKE.  This results in 
erroneous values.  At a range of 620 km, SPH35 returns a value 
acceptable to SEKE, which is, however, incorrect.  (The dashed 
line of Figure 1 shows the values returned by SPH35N).  Further 
study shows that the problems in SPH35 are associated with the 
computation of Airy functions in that routine. 

2.3  Spherical Earth Diffraction Subroutine and Fock's 
Series 

Fock has shown [3], that the propagation factor, F, is a 
function of normalized antenna height, y, normalized target 
height, z, and normalized range, x, given by the following sum: 

oo i 

F(x, y, z) = 2v/^ £ /n(v)/n(*)exp(-(v7^ + i)anx) < 1 > 
n=l Z 

F is the propagation factor, defined here to be the ratio of 
the electric field at a point to the free space electric field 
at that point, 

/»(«) = 

Ai(w)   is  the 

Ai(an +exp(y)u) 
exp(f)Ai'(an) (2) 

Airy  integral:       M{w) = ± [°°cos(Lt
3 + wt)dt 

TT J0 3 

and an are the zeroes of the Airy integral. 

An antenna height (ha) and a target height (h^), cor- 
respond to normalized heights of 

ha ht (3) 
      2 = — 
ho h0 

V = T     z = 



respectively, where the normalization constant is given by 

(4) 

where a is the effective radius of earth, and X   is the 
wavelength.  The range normalization factor r0 and the normal- 
ized range x are given by: 

r0=  )     x = - (5) 

SPH35, the algorithm that has been employed to evaluate 
the propagation factor in the spherical earth diffraction 
region, uses the first n terms (n > 35) in Fock's series.  The 
convergence criterion is that the contribution of each one of 
three successive terms of the series is less than 
8 = 0.0005.  If this criterion is not met while considering the 
first 35 terms, SPH35 returns a message that it "diverged". 
When SPH35 "diverges" SEKE applies the geometrical optics sub- 
routine if the point is visible, otherwise it uses the knife- 
edge diffraction subroutine. 

SPH35 expresses fn(u) as fn(u) = exp (X.n(u) + i|j.n(u)), 
where Xn(u) and |in(

u) are fitted by fourth order polynomials in 
u.  The coefficients of the polynomials for each term of the 
series are tabulated in SPH35.  In order to make the polynomial 
fit more accurate, the range of normalized heights (u) is 
divided in four separate regions.  (See Table I).  fn<u) = u 

has been found to be a good approximation in the interval 
0 < u < 0.05.  For the regions, 0.05 $ u < 0.2, 0.2 < u < 3, 
3 < u < 10, and 10 < u < 100 four different polynomial fits are 
used.  No attempt is made in this original version of SPH35 to 
obtain accurate polynomial fits to Xn and |in for u > 100.  In 
this high altitude region, SPH35 returns coefficients for Xn 



TABLE I 

Approximations Used in SPH35 to Evaluate fn(u) for Different 
Ranges of Normalized 

Target Height u 

RANGE CALCULATION of fn(u) 

0 < u < 0.05 fn(u) = u 

0.05 < u < 0.2 1st fourth-order polynomial fit 

0.2 < u < 3 2nd fourth-order polynomial fit 

3 < u < 10 3rd fourth-order polynomial fit 

10 < u < 100 4th fourth-order polynomial fit 

u > 100 value of u out of range (however SPH35 
returns a value for F according to the 
4th fourth-order polynomial fit) 



and ^ln according to the fourth polynomial fit.  As a result, 
the accuracy of SPH35 is limited to normalized heights of up to 
100 (i.e. 7000 m at VHF, or 317 m at Ku band). 

There are two potential problems with SPH35.  First, there 
is no polynomial fit for u > 100.  Second, even for lower 
altitudes, inaccuracies in the polynomial fits result in 
erroneous values for the propagation factor or failure to con- 
verge for some combinations of antenna and target heights near 
the optical horizon.  These discrepancies occur in regions 
where the sum of the series is much smaller than the largest 
term, or where many terms are required for convergence. 

In order to test the accuracy of the polynomial fits, the 
values returned by SPH35 were compared with the values returned 
by another subroutine PROPSES.  PROPSES calculates the Airy 
functions by numerically integrating the differential equations 
which define them.  This technique results in high accuracy but 
requires long computational time. 

Table II shows the percent error in SPH35.  Sample runs 
are presented for each of the polynomial fits.  It is seen that 
the fourth polynomial fit is inaccurate even far into the dif- 
fraction region.  The remaining fits seem to work adequately 
far into the diffraction region, but SPH35 sometimes fails to 
return a value or return an inaccurate value when called well 
inside the horizon. 

It is apparent from the above discussion and the sample 
run presented that the accuracy of the fourth order polynomial 
fits for fn(

u) is not always sufficient to obtain a reasonable 
prediction for the propagation factor.  As a result, there is a 
need for a new spherical earth diffraction subroutine where the 
Airy function is evaluated using a more accurate method.  The 
remainder of this report describes such a new spherical earth 
diffraction subroutine. 



TABLE II 

SAMPLE RUNS FOR FINDING THE PERCENT ERROR 
OF fn(u) FOR EQUAL ANTENNA AND TARGET HEIGHTS 

Method for 
calculating 
fn(u) in 
SPH35 

ha = ht 
(m) 

% Error 
at first point 

where spherical 
earth 
diffraction 
is used by SEKE 
(well within the 
optical horizon) 

Error at a range of 
1.5 times the 

optical horizon 

fn(u) = u 3 18.07 ~ 0 

1st fit 10 SPH35 failed 0.15 

2nd fit 70 - 0 0.03 

3rd fit 600 16.68 0.72 

4th fit 5, 000 SPH35 failed 28.65 



2.4  Properties of the Airy Function 
Algorithms for the evaluation of the Airy function with 

real arguments are readily available [8].  However, their modi- 
fication to handle complex arguments is not straightforward. 
The power series expansion can be used only in a small region 
near the origin, and the asymptotic formulas do not give suffi- 
cient accuracy for moderate values of z = x + iy [3]. 

The Airy function Ai(z) 
1 rc 

Ai(z) = i. / 
7T JO 

cos(-*3 + Zt)dt 

satisfies the differential equation 

<Pu(z) 
-j-Z- -z.u(z) = 0 

The two sets of linear independent solutions to the above equa- 
tion are Ai(z), Bi(z) and Ai[(z exp + (27ti/3) ] where 

1   f°° 1 l 
Bi{z) = - /    [exp(--t3 + zt) + sm(-t3 + zt)]dt 

it Jo 6 3 
(6) 

The functions are entire and so have convergent power series 

Schulten et al [4] give an integral representation for the 
* Airy function whose evaluation by a Gaussian quadrature method 
requires only a few terms.  The integral representation for 
Ai(z) is derived from an expression for the modified Bessel 
function of the second kind K^ (z).  (formula 6.627 of Ref.[5]. 

r~ x-l'2e-xKv{x) j_ _ Tze^Ku(C) 

/o r Jo x + C 
•dx — 

1-1/2 
COs(l/7r) 

|argC| <?r   Re{u)< - 
If we  set v =  1/3,   £ =  2  z3/2  and substitute: 

(7) 

K1/3(x) = 
TTy/3 

(f^)1/3 Ai 
3x\V3l 

\~2 (8) 

10 



equation   (7)   can be  solved  for Ai(z). 

°'   1 + ^ (9) 
\argz\ < ^- \z\ > 0 

p(x) is a non-negative exponentially decreasing function: 

(10) 
p(x) = x-WTrWz-Wx-We-Ai 3x\2's 

2 

This integral representation is valid in the sector 
I arg z| < 2TI/3.  However, there exists a connection formula 

that transforms a point outside this sector to a weighted sum 
of two linearly independent points inside it: 

Ai{z) = eH/3Ai(ze-2vi/s) + e-^3Ai(ze27ri/3) (11) 
(See formula 10.4.7 of Ref. [3]). 

Even though p(x) contains the Airy function, the weights 
and abcissas for the Gaussian quadrature can be computed 
without an accurate computation of the Airy function, because 
the moments of p(x) can be evaluated in closed form. 

3.  ALGORITHM FOR EVALUATING THE COMPLEX 
AIRY FUNCTION 
As mentioned above there exists a power series expansion 

for the Airy function.  This series method is used to evaluate 
the value of the Airy function close to the origin.  For large 
values of z a Gaussian quadratures method is implemented to 
evaluate the integral representation above.  These two numeri- 
cal methods are used in the part of the complex plane where 
Iarg z| < 2K/3.     For the remaining part of the plane the con- 
nection formula is used. 

It was found by looking at the values returned by these 
two different methods (power series and Gaussian quadratures) 

11 
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Fig. 2.  Regions on the complex plane where the power series 
expansion, the Gaussian quadratures method to solve the 
integral representation and the connection formula are each 
used. 
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on certain radials of the right half-plan (x>0) that the two 
methods returned the same value for Ai(z), within four sig- 
nificant digits, when |z| « 2.  As a result, the algorithm was 
implemented so that if z lies in the right half-plane and 
|z| ^2, then Ai (z) is evaluated by the power series expan- 

sion.  If |z| > 2 (and x> 0) then Ai(z) is evaluated by the 
Gaussian quadratures method.  When x < 0 (left-hand plane), it 
was found that the two methods overlapped at |z| •» 4.  As a 
result if |z| > 4 and x < 0, then the power series expansion 
algorithm is used.  If |z| > 4 and x < 0, the Gaussian 
quadratures method is applied.  Figure 2 defines the region on 
the complex plane where the power series expansion, the Gauss- 
ian quadratures method and the connection formula are used. 

3.1  Power (Taylor) Series Expansion 
The Airy function is entire, so a convergent Taylor series 

representation exists for it (See Eq. 10.4.2 of Ref. [3]). 
This series converges very fast for small values of z.  When a 
large value of z is used, the series converges very slowly, and 
inaccuracies occur due to large cancellations.  The Taylor 
series expansion is given by: 

Ai(z) = a • h(z) - (3 • g(z) 

(12) 

where: 

a = M0) = _^2 . __ = 0.3550280538 (13) 

13 



~    t/l\    z3k 1   ,    1-4 6    1 -4-7 o 

Jt=0 

to    V3A(3fc + l)!     Z+4!? +   7! * + ^^~2 
10!        "*"'" (16; 

3fc(7 + ^)   =1 
o  0 

3fc(7+^)   =(37 + l)(37 + 4).--(37 + 3fc-2) 

(7 arbitrary, k=l,2, • • •) 

Equation (12) is implemented in the algorithm that 
evaluates the Airy Function in the power series region (see 
Figure 2). 

In order to reduce the growth of the round-off error, the 
series are evaluated term by term: 

m 

Ai(z) = J2 an{z) 

an(z) = a hn(z) - p gn(z) 

for an m such that am(z) < 10 •*•", where 

and hn(z) and gn(z) are the nth terms in the expressions for 
g(z) and h (z) . 

3.2  N-Point Gaussian Quadratures Approximation 
As mentioned above Ai(z) is evaluated for large z by the 

generalized Gaussian quadratures method.  The challenging part 
with this method is to find a function p(x) so that the in- 
tegrable singularities are removed from the Airy integral. 
Given p(x) and given the number of terms N that should be used, 
one can find a set of weights w^ and abscissas x^ such that the 
approximation: 

14 



/ p(x)p{x)dx ~ 22wip(x,) 
Jb t=i 

(18) 

is exact, if p(x) is a polynomial of degree less than 2N. 

Schulten et al.[4] give an integral representation for Ai(z), 

whose evaluation by a Gaussian quadrature method requires only a 
few terms: 

Ai(z) = lir-^-^e-C r f^-dx K '      2 Jo    x + C 
|^r 1 > 0 and | arg£| < 7r 

(19) 

where 

p(x) = n-V22-u/e3-2/3x-V3e-xAi 
3x\2/3 

2 ) and C=p/2 
(20) 

The integral portion of equation (19) can be approximated 

by the quadrature formula: 

Jo   C + x    fr*0 c + xi (21) 

The weights WJ_ and the abscissas x-j_ were found by im- 

plementing the procedure described by Press [6]. 

The "scalar product of two functions f and g over a weight 

function p(x)", is defined as: 

f\9 >= J p(x)f(x)g(x)di 
(22) 

A set of orthogonal polynomials that includes exactly one 

polynomial of order j, called pj(x) j=0, 1, 2, ... is 

needed to find the weights and abscissas. 

15 



This set of polynomials can be constructed by the following 
recurrence relation: 

P.+iO) = x — 
< Xpi\pi > 

<pi\pi >. 

Po(ar) = 1 

Pi(x) - < Pi\Pi > 
<Pi-i\pi-i > 

Pi-i(x) 
(23) 

(the  second term  is  omitted when  i=0),   and 

< xPi\Pi >= /  p(x)xpi(x)pi(x)dx 
Ja (24) 

The integral of equation (24) can be readily evaluated by 
observing that p(x) is a solution to the Stieltjes moment prob- 
lem, whose moments (i^ can be explicitly evaluated:  (Formula 
6.621.3, [5]) 

T(3k + 1/2) 
tik-jQ   x p(x)dx - 5WT{k + i/2) 

k = 0,1,2, ••• 
(25) 

as a result <xpilpi> becomes a sum of Hk's-  Once the abscissas 
X]_, X2 .... x^ (i.e. the N zeroes of PN(X)) are known, the 
weights WJ_ can then be found. 

Press [6] presents a simple method to find the w^'s. A 
new sequence of polynomials (p(x) is constructed, by the fol- 
lowing recurrence: 

<p0(x)   =   0 

<fii(x)   =   Pi I   P(x)dx = 1 
Ja 

< Xpi\pi > 
V,+i(z)    = X — 

<pi\pi > . 
Vi(*) - 

< PilPi > 
<p,_1|p,_i > 

(26) 

16 



where p'  is the derivative of p (x). 

The weights of an N-point Gaussian quadrature are given by 
the relation: 

jMfO   -i 9   N (27) w{ =     r   1=1,2, •••, JN 
PN(

X
O 

The procedure described above was implemented to find the 
weights WJ_ and abscissas x^ for the N-point Gaussian quadrature 
approximation.  When the Airy function is evaluated by this 
method it is dependent on N, the number of terms used in the 
summation: 

N 

*<«.*)-r-"'-^^ 
2 

3' 
where £ = -z ' (28) 

We calculated Ai (z, N) (for |z| > 4) for N =1, 2 ...20.  It 
was found that the values of Ai(z, N) were almost the same for 
values of N near 10.  For larger or smaller N, the values of Ai 
(z, N) were quite different indicating truncation or round-off 
error.  It was thus decided, that N=10, is a good choice for 
the number of terms that should be used in the Gaussian quadra- 
tures approximation.  Table III gives a list of the weights WJ_ 

and abscissas x^ for the 10-term Gaussian Quadrature integra- 
tion for the Airy function. 

4.  ALGORITHM FOR EVALUATING THE PROPAGATION FACTOR IN THE 
SPHERICAL EARTH DIFFRACTION REGION (SPH35N) 
4.1  Computational Difficulties and Solutions 
The above algorithm for evaluating the Airy function was 

implemented in a new spherical earth diffraction subroutine 
(SPH35N).  However, the incorporation of this algorithm to 

17 



TABLE III 

10-TERM GAUSSIAN QUADRATURES INTEGRATION FOR THE AIRY FUNCTION 

Abscissas Weights 

i xi Wi 

1 1.408308107197377E+01 2.677084371247434E-14 

2 1.021488548060315E+01 6.636768688175870E-11 

3 7.441601846833691E+00 1.758405638619854E-08 

4 5.307094307915284E+00 1.371239148976848E-06 

5 3.634013504378772E+00 4.435096659959217E-05 

6 2.331065231384954E+00 7.155501075431907E-04 

7 1.344797083139945E+00 6.488956601264211E-03 

8 6.418885840366331E-01 3.644041585109798E-02 

9 2.010034600905718E-01 1.439979241604145E-01 

10 8.059435921534400E-03 8.123114134235980E-01 

18 



compute fn(u) in Fock's series, is not straightforward.  A 
problem arises in the evaluation of Ai(w), where 
w = an + exp(rci/3) u, by the Gaussian quadrature method.  As 
IwI becomes large, in the region |arg wj > 7i/3, the expression 
exp (-2/3 w3/2)f could overflow.   However, looking at Fock's 
series the term exp(1/2(V3 + i) anx) can be used to partially 
cancel a large value for exp(-2/3 w3/2).  The subroutine that 
evaluates the Airy function returns 
Ai(w)s Ai(w) exp (2/3 w^/2), instead of Ai(w).  The Fock's 
series equation implemented in SPH35N, then becomes: 

OO r /I \ • 

F(ar,y,z) = 2v^E/"(2/)/n(2)exP "^ " C + («(V3+ »>«*] 
n=l L V/ /J (29) 

where 

Ti(an+exp(f)u) 
fn(u) = - 1 -—'- 

exp(^Ai>(an) 4> = %vm and 
2 

3; c = ^3/2 

The connection formula used when Ai(z) is evaluated instead of 
Ai (z), becomes: 

Ti(z) = e^Tt (ze-^) e^3'2 + e'^M (ze^) 

where Ai(w) = Ai(w)e'2/3w ' 

(30) 

SPH35N considers as many terms in Eq. (29) as are needed 
to get two consecutive terms that contribute, in absolute 
value, less than 0.0005.  If this does not occur within the 
first 35 terms, SPH35N is considered to have "diverged". One 
more check is performed in SPH35N to make sure that the com- 
putation is accurate.  If any one of the terms in equation (29) 
contributes more than 10,000, SPH35N is interrupted.  A maximum 
contribution of 10,000 per term was picked since Ai(w) is 
evaluated with an accuracy of at least four significant digits. 
This criterion ensures that SPH35N does not produce wholly 
spurious results because of cancellation. 
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Empirically, 10,000 seemed to work very well.  SEKE does 
try, for some few combinations of antenna and target heights, 
to use SPH35N in the multipath region far above the optical 
horizon.  When this happens, a term in SPH35N contributes more 
than 10,000, making it impossible, given the accuracy of the 
Airy function, to cancel its contribution.  Had this check not 
been included, SPH35N would have incorrectly concluded that the 
series converged.  With this check, SEKE uses geometric optics, 
which is accurate in this region. 

In certain other cases, where a large obstacle masks the 
target, SEKE tries to use a combination of spherical earth dif- 
fraction and knife-edge diffraction.  In some of these cases, 
even though the target is masked, it can be well above 
the horizon for the smooth fit to the terrain used by SEKE to 
determine the effective heights for the spherical Earth 
routine; this sometime results in SPH35N "diverging".  When 
this happens, SEKE is forced to use only knife-edge diffraction 
as expected, since the dominant effect is the obstacle. 

4.2  Range of Validity of SPH35N when Called from SEKE 
The range of validity of SPH35 in target-to-antenna dis- 

tance x, was investigated for a fixed normalized target height, 
y, and antenna height, z.  It was found that the range where 
SPH35N broke down was always in a region where SEKE would use 
geometrical optics, since the minimum clearance was found to be 
greater than a Fresnel clearance for any combination of y and 
z, where y < 5000 and z < 5000 (i.e. heights of less than 375 
km at VHF or 17 km at Ku band).  As mentioned above, in prac- 
tice SEKE occasionally calls the sphere diffraction program in 
a region where it fails to return an answer.  SEKE then either 
uses the geometric optics calculation when the point is in the 
multipath region or the knife-edge diffraction calculations 
when the point is masked.  It has been found empirically that 
SEKE makes an accurate decision in such cases. 
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5.  EVALUATION OF SPH35N 
SPH35N was run for certain cases where SPH35 would not 

work correctly either because y or z were greater than 100, or 
because of cancellation error when y and z are less than 100. 
Two examples are shown in Figures 3 and 4.  Figure 3 presents 
the two-way propagation factor F2 in dB with respect to range 
for antenna heights ha = 10 m (z = 0.14) and target 
height ht = 2.000 m (y = 28.57) at VHF.  The solid line gives 
the prediction using SPH35 and the dashed line the prediction 
using SPH35N.  The spike in the prediction disappears when 
SPH35N is used.  Figure 4 presents another plot of F2 (dB) with 
respect to range for antenna height ha = 6000 m and target 
height ht = 10 m.  In this case, the plot resulting by the use 
of SPH35 shows most of the problems created by the inaccurate 
evaluation of the Airy function in the spherical earth diffrac- 
tion subroutine.  At around 275 km, SEKE tries to use spherical 
earth diffraction, but SPH35 "diverges", so SEKE uses the geom- 
etrical optics subroutine up to the optical horizon.  Beyond 
the optical horizon knife-edge diffraction is used, returning a 
constant value of F2 = -6 dB.  At around 350 km SPH35 "con- 
verges" and returns a value.  When SPH35N is employed, the 
resulting curve is smooth.  Problems as the ones encountered 
when using SPH35 do not occur, since SPH35N is able to return a 
value when called by SEKE, as expected from the specified range 
of validity of SPH35N. 

6.  CONCLUSIONS 
We have presented a subroutine that evaluates the propaga- 

tion factor in the spherical earth diffraction region by apply- 
ing Fock's series using an accurate and efficient algorithm to 
evaluate the complex Airy function. 

The Airy function is evaluated by the power series expan- 
sion for |z| close to the origin, by the 10 term Gaussian 
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Fig. 3.  Prediction of the two way propagation loss as a 
function of range for antenna height = 10 m and target height 
= 2000 m at VHF (167 MHz).  The solid line shows the prediction 
according to SPH35 and the dashed line according to SPH35N. 
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quadrature approximation for large |z| and the connection for- 
mula for |arg z| < (2/3)71 i.e. in the region where the integral 
representation is invalid.  The implemented Airy function 
checks with Airy tables within four significant digits.  Incor- 
porating this subroutine in SEKE eliminated inaccuracies caused 
by the old spherical earth diffraction subroutine (SPH35), that 
uses a fourth-order polynomial fit to approximate the Airy 
function.  The new subroutine, SPH35N, was found to be equally 
fast as SPH35 and adequately accurate for normalized heights of 
less than 5000, so that it performs as desired when called from 
SEKE. 
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Listing of SPH35N 

C***************************************************************** 

c * 
C        SPHERICAL EARTH DIFFRACTION LOSS SUBROUTINE * 

C APPLYING THE ANALYSIS DESCRIBED IN * 

C FOCK.V.A.,ELECTROMAGNETIC DIFFRACTION AND PROPAGATION PROBLEMS,* 
C OXFORD:PERGAMMON PRESS, LTD , 1965 * 

C * 
C GEORGE H. POLYCHRONOPOULOS   1 /87 * 

C * 
C***************************************************************** 

SUBROUTINE SPH35N (RNG.Z1,Z2,WAVE,AE,F) 

REAL RNG,Z1,Z2,WAVE,AE,F 

REAL *8 X,Y,Z,COEFl.COEF,SENSI,ATER,APTERM,DO,HO 

COMPLEX*16 C0EF2,EPI,FNY,FNZ,TERM.ETERM,SUM,FAIRY,AY,AZ, 
+ ZETAY.ZETAZ 

INTEGER N.FLAG 

DIMENSION A(35),DA(35) 

DATA PI /3.141592/ 
NEGATIVE OF THE ZEROES OF THE AIRY FUNCTION 

DATA A /-2.33810, -4.08794, -5.52055, -6.78670, -7.94413, 

+ -9.02265,-10.04017,-11.00852,-11.93601,-12.82877, 
+ -13.69148,-14.52782,-15.34075,-16.13268,-16.90563, 

+ -17.66130,-18.40113,-19.12638,-19.83812,-20.53733, 
+ -21.22482,-21.90136,-22.56761,-23.22416,-23.87156, 

+ -24.51030,-25.14082,-25.76353,-26.37880,-26.98698, 

+      -27.58838,-28.18330,-28.77200,-29.35475,-29.93176/ 

THE DERIVATIVE OF THE AIRY FUNCTION EVALUATED AT THE ZEROES 

DATA DA/0.70121, -0.80311, 0.86520, -0.91085, 0.94733. 
+ -0.97792, 1.00437, -1.02773, 1.04872, -1.06779. 

+ 1.08530, -1.10150, 1.11659, -1.13073, 1.14403, 

+ -1.15660, 1.16853, -1.17988, 1.19070, -1.20106, 

+ 1.21098, -1.22052, 1.22970, -1.23854, 1.24708. 

+ -1.25534, 1.26334, -1.27109, 1.27861, -1.28592, 

+       1.29302, -1.29994,  1.30667, -1.31324,  1.31965/ 

SET UNDERFLOW CONDITION TO NO PRINTOUT 

32 



CALL ERRSET(208,0,-1,1,1,0) 

C FIND THE NORMALIZED EQUIVALENT OF RNG.Z1.Z2 

D0=(AE*AE*WAVE/1E5/PI)*<*.33333333 
H0=(AE*WAVE*WAVE/10/PI/PI)**.33333333/2 
X=RNG/DO 

Y=Z2/H0 

Z=Z1/H0 

C        EXP (PI*I/3) 
EPI =   ( 0.5000001812D+00,  0.8660252991D+00) 

C  C0EF1 = 2*SqRT(PI) 
C0EF1 = 0.3544908524D+01 

C  C0EF2 = 1/2*(SQRT(3)+I) 

C0EF2 = ( 0.86602S4478D+00,  0.5000000000D+00) 
COEF = C0EF1 * DSQRT (X) 
SENSI= 0.0005 

C  INITIALIZE 
FLAG = 0 
N = 1 
APTERM = 10000. 

SUM = (0..0.) 

C COMPUTE 35 TERMS IN FOLK'S SERIES OR UNTIL THE CONTRIBUTION OF 

C   OF TWO SUCCESSIVE TERMS IS LESS THAN 0.0001 FOR EACH ONE 

2 IF ((N.EQ.36).0R.(FLAG.EQ.-2).0R.(FLAG.EQ.-1)) GOTO 1 
AY = A(N)+EPI*Y 

FNY = FAIRY(AY)/(EPI*DA(N)) 

AZ = A(N)+EPI*Z 

FNZ = FAIRY(AZ)/(EPI*DA(N)) 

C    THE VALUES RETURNED BY FAIRY ARE AI(W)*EXP(ZETAW), WHERE 
C       ZETAW = 2./3.*(W**(3./2.)) 

ZETAY = 2./3.*(AY*CDSqRT(AY)) 

ZETAZ = 2./3.*(AZ*CDSQRT(AZ)) 
ETERM = -ZETAY-ZETAZ+(C0EF2*A(N)*X) 

TERM = FNY*FNZ*CDEXP(ETERM) 
ATERM = CDABS (TERM) 

IF (ATERM.LE.10000) GOTO 3 
C      FORCE THE PROGRAM TO TERMINATE IF ONE TERM CONTRIBUTES 

C MORE THAN 1000 

FLAG =-2 

3 CONTINUE 
IF ((APTERM.GE.SENSI).OR.(ATERM.GE.SENSI)) GOTO 4 

FLAG =-1 
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4 CONTINUE 
APTERM = ATERM 
SUM = SUM + TERM 
N = N+l 

GOTO 2 
1 CONTINUE 

F = COEF *CDABS(SUM) 
C F=-l WHEN 35 TERM ARE HOT ENOUGH I.E SPH35N "DIVERGED' 

IF (FLAG.NE.O) GOTO 5 
F = -1. 

5 CONTINUE 
C F=-2 WHEN ONE TERM CONTRIBUTES MORE THAN lOOOO 

IF (FLAG.NE.-2) GOTO 6 
F = -2. 

6 CONTINUE 
RETURN 
END 

C********************************************************* ******** 

C FUNCTION TO CALCULATE AIRY FUNCTIONS        * 
C IN THE COMPLEX PLANE * 
C THE POWER SERIES AND GAUSSIAN QUADRATURE METHODS ARE USED IN * 
C THE UPPER HALF PLANE. THE PROPERTY OF COMPLEX CONJUGATE OF * 
C AIRY FUNCTIONS IS USED TO CALCULATE THE AIRY FUNCTION IN THE * 
C LOWER PLANE. * 
C * 
C * THIS FUNCTION RETURNS AI(Z)*EXP(2*(Z**3/2)/2) * 
C * 
C***************************** ************************************ 

COMPLEX FUNCTION FAIRY*16 (Z) 

REAL*8   RZ.IZ.TANZ 
COMPLEX*16 Z,AIR,AI,EPI,EPINT,EPIN,EPIT,AZETA 

C CALL ERRSET TO SUPPRESS MESSAGES WHEN ONE OF THE TERMS UNDERFLOWS 
C   IN THE CONNECTION FORMULA 

CALL ERRSET (208,0,-1,1,1,0) 

C  ASSIGN THE EXP NEEDED FOR THE CONNECTION FORMULA 
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C       EXP (PI*I/3) 
EPI = ( 0.5000001812D+00, 0.8660252991D+00) 

C       EXP (-2*PI*I/3) 
EPINT= (-0.4999996375D+00, -0.8660256131D+00) 

C        EXP (-PI*I/3) 
EPIK = ( 0.5000001812D+00, -0.8660252991D+00) 

C        EXP (-4*PI*I/3) = EXP (2*PI*I/3) 
EPIT =  (-0.4999996375D+00,  0.8660256131D+00) 

RZ = DREAL (Z) 
IZ = DIMAG (Z) 

C IF WE ARE IN THE CONNECTING FORMULA WEDGE 2PI/3<=ARG Z<=4PI/3 
C   APPLY MAPPING FORMULA TO GET OUT OF THE WEDGE 

AZETA = CDEXP (4.*(Z*CDSQRT(Z))/3.) 
TANZ = IZ/RZ 

C AI(Z) RETURNS AIRY(Z)*EXP(2/3*Z**2/3) 
IF ((RZ.LT.0).AND.(TANZ.LE.1.7032).AND. 

+        (TANZ.GE.-1.7032)) GOTO 1 
AIR = AI (Z) 

GOTO 2 
C CONNECTION FORMULA FOR AI(Z) 
1 AIR = EPI*AI(Z*EPINT)*AZETA+EPIN*AI(Z*EPIT) 
2 CONTINUE 

FAIRY = AIR 
RETURN 
END 

COMPLEX FUNCTION AI*8 (AZ) 

COMPLEX*16 AZ,POWER,GQA 
REAL*8 MAZ.RAZ 

C SET UNDERFLOW CONDITION TO NO PRINTOUT 
CALL ERRSET(208,0,-1,1,1,0) 

MAZ = CDABS (AZ) 
RAZ = DREAL (AZ) 

C IF 2PI/3 <=ARG ZA <= PI/2 OR 4PI/3 <= ARG ZA <= 3PI/2 
IF (RAZ .LE.O) GOTO 3 
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IF (MAZ.LE.2) GOTO 7 

AI • GQA (AZ) 

GOTO 8 

7 AI = POWER (AZ) 
8 CONTINUE 

GOTO 4 

3 IF (MAZ .LE. 4) GOTO 5 

AI = GQA (AZ) 

GOTO 6 

5 AI = POWER (AZ) 

6 CONTINUE 
4 CONTINUE 

C  IF IN THE RIGHT HALF PLANE ( REAL(ZA) >= 0) 

RETURN 
END 

C***************************************************************** 

C POWER SERIES OF AIRY FUNCTION * 

C POWER SERIES ARE COMPUTED ITERATIVELY UNTIL THE ADDITIONAL TERM* 
C CONTRIBUTES LESS THAN i*E-10 * 

C * 

C THE FORMULA USED WAS TAKEN FROM J.C.MILLER "THE AIRY INTEGRAL",* 
C BRITISH ASSOC. ADV. SCI., MATH TABLES VOLUME B.1946 B17 * 
C******** ******************************************* ************** 

COMPLEX FUNCTION P0WER*16 (Z) 

REAL*8 ALPHA,BETA,DEN1.DEN2.NUM1,NUM2,ATERM.FACTOR 
+ IN31, IN32 

C0MPLEX*16 Z,AIRY,TERM1.TERM2.TERM,Y1.Y2,PI,P2.EZETA 
INTEGER*4 POWER1.P0WER2.FP1,FP2,N 

C SET UNDERFLOW CONDITION TO NO PRINTOUT 
CALL ERRSET(208,0,-1,1.1,0) 

ALPHA = 0.355028053887817 

BETA = 0.258819403792807 

ATERM = 100000. 

EZETA = CDEXP (2.*(Z*CDSQRT(Z))/3.) 
N = 1 

AIRY = ALPHA-(BETA*Z) 
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P0WER1= 3 

P0WER2= 4 

C  CONTIHUE ADDING TERMS UNTIL THE CONTIBUTION OF THE LAST TERM IS 

C LESS THAN 1E-10 
2 IF (ATERM.LE.1E-10) GOTO 1 

Pl=Z**POWERl 
P2=Z**P0WER2 

FP1 = POWER1 
FP2 = P0WER2 

DEN1= FACTOR(FPl) 
DEN2= FACT0R(FP2) 

NUM1= IN31(N) 
NUM2= IN32(N) 
TERM1 = ALPHA*(NUM1/DEN1*P1) 

TERM2 = BETA *(NUM2/DEN2*P2) 
TERM = TERMi- TERM2 
AIRY = AIRY + TERM 
POWERl= P0WER1+3 

P0WER2= POWER1+1 

N = N+l 
ATERM = CDABS(TERM) 

GOTO 2 

1 CONTINUE 
POWER = AIRY*EZETA 

RETURN 
END 

C 

C FUNCTION THAT RETURNS THE FACTORIAL OF AN INTEGER * 

c 
REAL FUNCTION FACT0R*8(N) 

C 

C   SET UNDERFLOW CONDITION TO NO PRINTOUT 

CALL ERRSET(208,0.-1,1.1,0) 
IF ((N.Eq.O) .OR. (N.EQ.l)) GOTO 10 
FACTOR = 1. 

30 IF (N.EQ.l) GOTO 20 

FACTOR = FACTOR*N 

N = N-l 

GOTO 30 

20 RETURN 
10 FACT0R=1. 

RETURN 
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END 

C 

C 
C***************************************************************** 

C FUNCTION THAT EVALUATES 1*4*7 3*(N-1)+1 * 
C***************************************************************** 

c 
REAL FUNCTION IN31*8(N) 

C 
C SET UNDERFLOW CONDITION TO NO PRINTOUT 

CALL ERRSET(208,0,-1,1,1,0) 

IN31 =1 
IF (N.Eq.l) GOTO 50 
DO 40 1=2,N 

IN31 = IN31*(3*(I-1)+1) 
40 CONTINUE 

50 RETURN 

END 

C 

C 
c***************************************************************** 
C FUNCTION THAT EVALUATES 2*5*8 3*(N-l)+2 * 
C*******************************************************+********+ 

c 
REAL FUNCTION IN32*8(N) 

C 
C SET UNDERFLOW CONDITION TO NO PRINTOUT 

CALL ERRSET(208,0,-1,1.1,0) 

IN32 =2 

IF (N.Eq.l) GOTO 60 

DO 70 1=2,N 

IN32 = IN32*(3*(I-l)+2) 

70 CONTINUE 
60 RETURN 

END 

C***************************************************************** 

C PROCEDURE TO CALCULATE THE AIRY FUNCTION OF        * 

C A COMPLEX ARGUMENT BY THE GAUSSIAN QUADRATURES METHOD * 

C AI(Z) = 1/2*(PI**(-1/2))*(Z**(-1/4))*EXP(ZETA)*SUM OVER N * 
C W(I)/(1+X(I)/ZETA)) * 

C * 
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C IMPLEMENTED AS IN "AN ALGORITHM FOR THE EVALUATION OF * 

C OF COMPLEX AIRY FUNCTIONS", JOURNAL OF COMPUTATIONAL * 

C PHYSICS 31, 60-75 (1979) * 
C * 
C THIS FUNCTION RETURNS AI(Z)*EXP(ZETA) * 
C * 

C WEIGHTS AND ZEROES WERE CALCULATED BY GQAIRY.PLI * 
C***************************************************************** 

COMPLEX FUNCTION GQA*16 (Z) 

REAL *8 ZEROES (10).WEIGHT(IO) 
COMPLEX *16 AIR.Z.SUM.ZETA 
INTEGER N 
DATA DSqRPI /O.564189584/ 

C SET UNDERFLOW CONDITION TO NO PRINTOUT 

CALL ERRSET(208,0,-1,1,1,0) 

C INITIALIZE (ASSIGN VALUES TO WEIGHTS AND X-INTERCEPT) 

ZER0ES(1)= 1.408308107197377E+01 

ZER0ES(2)= 1.021488548060315E+01 

ZER0ES(3)= 7.441601846833691E+00 
ZER0ES(4)= 5.307094307915284E+00 

ZER0ES(5)= 3.634013504378772E+00 

ZER0ES(6)= 2.331065231384954E+00 

ZER0ES(7)= 1.344797083139945E+00 

ZER0ES(8)= 6.418885840366331E-01 
ZER0ES(9)= 2.010034600905718E-01 

ZER0ES(10)= 8.059435921534400E-03 

WEIGHT(1)= 2.677084371247434E-14 
WEIGHT(2)= 6.636768688175870E-11 

WEIGHT(3)= 1.758405638619854E-08 

WEIGHT(4)= 1.371239148976848E-06 

WEIGHT(5)= 4.435096659959217E-05 

WEIGHT(6)= 7.155501075431907E-04 

WEIGHT(7)= 6.488956601264211E-03 

WEIGHT(8)= 3.644041585109798E-02 

WEIGHT(9)= 1.439979241604145E-01 
WEIGHT(10)= 8.123114134235980E-01 
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SUM = 0. 
ZETA = 2.*(Z*CDSQRT(Z))/3. 

DO 100 1=1, 10 

SUM = SUM + (WEIGHT(I)/(1.0+(ZER0ES(I)/ZETA))) 
100 CONTINUE 

GQA = 0.5*DSqRPI/(CDSQRT(CDSQRT(Z)))*SUM 

RETURN 
END 
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